Bootstrap for continuous - time processes

نویسندگان

  • Masaaki Fukasawa
  • MASAAKI FUKASAWA
  • M. FUKASAWA
چکیده

An Edgeworth expansion of a Studentized statistic for an ergodic regenerative strong Markov process is validated. A specific nonparametric bootstrap method is proposed and proved to be second-order correct in the light of the Edgeworth expansion, which is a variant of the regenerative block bootstrap designed for discrete-time Markov processes. One-dimensional diffusions and semi-Markov processes are treated as examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrapping continuous-time autoregressive processes

We develop a bootstrap procedure for Lévy-driven continuous-time autoregressive (CAR) processes observed at discrete regularly-spaced times. It is well known that a regularly sampled stationary Ornstein–Uhlenbeck process [i.e. a CAR(1) process] has a discrete-time autoregressive representation with i.i.d. noise. Based on this representation a simple bootstrap procedure can be found. Since regul...

متن کامل

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

Parameter estimation and bias correction for diffusion processes

This paper considers parameter estimation for continuous-time diffusion processes which are commonly used to model dynamics of financial securities including interest rates. To understand why the drift parameters are more difficult to estimate than the diffusion parameter as observed in many empirical studies, we develop expansions for the bias and variance of parameter estimators for two mostl...

متن کامل

Parameters Estimation and Bias Correction

This paper considers parameter estimation for continuous-time diffusion processes which are commonly used to model dynamics of financial securities including interest rates. To understand why the drift parameters are more difficult to estimate than the diffusion parameter as observed in many empirical studies, we develop expansions for the bias and variance of parameter estimators for two mostl...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007